Specifications Table for EWAH-TZSLC2

EWAHC11TZSLC2 EWAHC12TZSLC2 EWAHC13TZSLC2 EWAHC14TZSLC2 EWAHC15TZSLC2 EWAHC16TZSLC2 EWAHH10TZSLC2 EWAH710TZSLC2 EWAH770TZSLC2 EWAH880TZSLC2 EWAH940TZSLC2 EWAH990TZSLC2
Cooling capacity Nom. kW 1,117 1,231 1,302 1,432 1,519 1,603 1,056 712.3 765.6 879.4 942.8 990.5
Capacity control Method   Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled
  Minimum capacity % 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
Power input Cooling Nom. kW 357.4 396 418.4 465.3 510.4 567.4 339.4 230.7 246.6 284.9 303.9 318.9
EER 3.126 3.109 3.111 3.077 2.975 2.826 3.11 3.088 3.104 3.087 3.102 3.107
Dimensions Unit Depth mm 11,402 12,302 11,402 12,302 13,202 14,102 10,510 6,909 6,909 7,809 8,709 9,602
    Height mm 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540
    Width mm 2,280 2,280 2,280 2,280 2,280 2,280 2,280 2,280 2,280 2,280 2,280 2,280
Weight Operation weight kg 11,116 11,518 11,727 12,145 12,575 13,048 9,871 7,313 7,313 8,152 8,585 9,483
  Unit kg 10,073 10,475 10,716 11,134 11,564 12,037 9,288 7,033 7,033 7,660 8,093 8,900
Water heat exchanger Type   Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube
  Water volume l 1,043 1,043 1,011 1,011 1,011 1,011 583 280 280 492 492 583
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
Fan Air flow rate Nom. l/s 122,464 132,670 122,464 132,670 142,876 153,081 112,259 71,438 71,438 81,644 91,849 102,054
  Speed rpm 900 900 900 900 900 900 900 900 900 900 900 900
Compressor Quantity   2 2 2 2 2 2 2 2 2 2 2 2
  Type   Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor
Sound power level Cooling Nom. dBA 102 103 102 102 103 104 101 98 98 99 100 101
Sound pressure level Cooling Nom. dBA 79 80 79 79 80 80 79 77 77 77 78 78
Refrigerant Type   R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze)
  GWP   7 7 7 7 7 7 7 7 7 7 7 7
  Circuits Quantity   2 2 2 2 2 2 2 2 2 2 2 2
  Charge kg 200 220 200 220 250 270 175 120 120 130 141 150
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400
Compressor Starting method   VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven
Notes (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0 (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0 (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0 (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0 (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0 (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0 (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0 (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0 (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0 (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0 (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0 (1) - Standard Rating Conditions for Air to water chillers according to EN14511:2 Outdoor Heat exchanger inlet dry bulb temperature 35°; Indoor heat exchanger inlet water temperature 12°C, outlet water temperature 7°C. Fouling factor = 0
  (2) - Voltage unbalance between phases must be within ± 3%. (2) - Voltage unbalance between phases must be within ± 3%. (2) - Voltage unbalance between phases must be within ± 3%. (2) - Voltage unbalance between phases must be within ± 3%. (2) - Voltage unbalance between phases must be within ± 3%. (2) - Voltage unbalance between phases must be within ± 3%. (2) - Voltage unbalance between phases must be within ± 3%. (2) - Voltage unbalance between phases must be within ± 3%. (2) - Voltage unbalance between phases must be within ± 3%. (2) - Voltage unbalance between phases must be within ± 3%. (2) - Voltage unbalance between phases must be within ± 3%. (2) - Voltage unbalance between phases must be within ± 3%.
  (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (3) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1 (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1 (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1 (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1 (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1 (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1 (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1 (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1 (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1 (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1 (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1 (4) - Based on minimum allowed voltage à Max. current for wire sizing = Max. Running current x 1,1
  (5) - In case of inverter driven compressor, the starting current is zero (5) - In case of inverter driven compressor, the starting current is zero (5) - In case of inverter driven compressor, the starting current is zero (5) - In case of inverter driven compressor, the starting current is zero (5) - In case of inverter driven compressor, the starting current is zero (5) - In case of inverter driven compressor, the starting current is zero (5) - In case of inverter driven compressor, the starting current is zero (5) - In case of inverter driven compressor, the starting current is zero (5) - In case of inverter driven compressor, the starting current is zero (5) - In case of inverter driven compressor, the starting current is zero (5) - In case of inverter driven compressor, the starting current is zero (5) - In case of inverter driven compressor, the starting current is zero
  (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram. (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram. (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram. (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram. (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram. (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram. (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram. (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram. (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram. (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram. (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram. (6) - It may change in case of unit with options or customized unit. Refer to dedicated unit’s wiring diagram.
  (7) - The data are referred to the unit without additional options. (7) - The data are referred to the unit without additional options. (7) - The data are referred to the unit without additional options. (7) - The data are referred to the unit without additional options. (7) - The data are referred to the unit without additional options. (7) - The data are referred to the unit without additional options. (7) - The data are referred to the unit without additional options. (7) - The data are referred to the unit without additional options. (7) - The data are referred to the unit without additional options. (7) - The data are referred to the unit without additional options. (7) - The data are referred to the unit without additional options. (7) - The data are referred to the unit without additional options.
  (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data. (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data. (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data. (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data. (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data. (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data. (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data. (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data. (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data. (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data. (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data. (8) - All data are subject to change without notice. For updated information on project base refer to unit specific wiring diagram and unit’s nameplate data.